Früher hieß es im Abitur: Bilde die Stammfunktion von f. Um der immer extremeren Dummheit der Schüler entgegenzukommen, heißt es heute: Zeige, dass F eine Stammfunktion zu f ist.
Der fundamentale Unterschied ist, dass man den Beweis nicht über Integration von f, sondern bequemer über Differentiation von F führen kann. (Und damit spart man sich auch ganz faul, sich mit Integration überhaupt auseinandersetzen zu müssen.) Die Frage ist jedoch grundsätzlich. Warum sollte ich den Beweis überhaupt führen, wenn die Lösung doch schon dasteht.
Bis hinauf in die Universität werden in "Beweisen" Argumente angeführt, die man eigentlich überhaupt nicht wissen kann, außer man kennt das Ergebnis (welches ja eigentlich doch erst herleiten und beweisen will) bereits.
Also besser: Suche die Stammfunktion von \(\int \tan^n (x) dx \). Genau so hat ein Beweis auszusehen.