Aloha :)
Da hier nicht nach Extremstellen, sonden nur nach waagerechten Tangenten gefragt ist, muss als einzige Bedinung die erste Ableitung verschwinden. Diese lösen wir mit der pq-Formel:
$$\left.f'(x)=3x^2+2bx+c\stackrel!=0\quad\right|:\,3$$$$\left.x^2+\frac{2b}{3}x+\frac{c}{3}=0\quad\right|\text{pq-Formel}$$$$x_{1;2}=-\frac{b}{3}\pm\sqrt{\left(\frac{b}{3}\right)^2-\frac{c}{3}}=-\frac{b}{3}\pm\sqrt{\frac{b^2}{9}-\frac{3c}{9}}=-\frac{b}{3}\pm\frac{1}{3}\sqrt{b^2-3c}$$Entscheidend für die Anzahl der Lösungen ist der Wert unterhalb der Wurzel.
1. Fall: \(b^2<3c\)
In diesem Fall ist \(b^2-3c<0\). Der Wert unter der Wurzel ist also negativ, sodass die Wurzel in \(\mathbb R\) nicht definiert ist. In diesem Fall gibt es keine Lösung und daher keine waagerechte Tangente.
2. Fall \(b^2=3c\)
In diesem Fall ist \(b^2-3c=0\) und es gibt genau eine Lösung, nämlich \(x_1=-\frac{b}{3}\). In diesem Fall gibt es also genau eine waagerechte Tangente.
3. Fall \(b^2>3c\)
In diesem Fall ist \(b^2-3c>0\) und die Wurzel ist \(>0\). Es gibt somit 2 unterschiedliche Lösungen und genau 2 waagerechte Tangenten.