0 Daumen
386 Aufrufe

Aufgabe: Von einem Düngemittel werden 4% abgebaut. Herr Klein verteilt einmalig 800mg Düngemittel in seinem Garten.

a) Die Restmenge in mg an Düngemittel lässt sich nach t Minuten durch eine Exponentialfunktion der Form          N(t) = No* e-λ·t  beschreiben. Man sollte die Exponentialfunktion bestimmen.

b) Wann hat sich die Menge an Dünger halbiert?

Ich verstehe die Nummer a nicht b schon aber ich weiß nicht was ich bei der Nummer a machen muss wäre sehr nett wenn mir wer helfen könnte.

Avatar von

3 Antworten

0 Daumen
Von einem Düngemittel werden 4% abgebaut.

Für welchen Zeitraum gilt diese Aussage???


Auf alle Fälle sind nach diesem Zeitraum nur noch 96%, also 0,96 * 800 mg vorhanden.

Nach 2 solchen Zeiträumen sind nur noch 0,96 *(0,96* 800 mg) vorhanden.

Nach n solchen Zeiträumen sind nur noch 0,96^n * 800 mg vorhanden.

Löse die Gleichung 0,96^n * 800 mg = 400 mg

bzw. vereinfacht

0,96^n = 0,5.

Avatar von 55 k 🚀
0 Daumen

Von einem Düngemittel werden (pro T Minuten) 4% abgebaut. Herr Klein verteilt einmalig 800 mg Düngemittel in seinem Garten.

a) Die Restmenge in mg an Düngemittel lässt sich nach t Minuten durch eine Exponentialfunktion der Form N(t) = No * e (hoch minus lamda mal t) beschreiben. Man sollte die Exponentialfunktion bestimmen.

N(t) = 800 * (1 - 0.04)^(t/T) = 800·e^(t/T·LN(1 - 0.04)) = 800·e^(-0.04082·t/T)

b) Wann hat sich die Menge an Dünger halbiert?

e^(-0.04082·t/T) = 0.5 --> t = LN(0.5)/(-0.04082)·T

Avatar von 488 k 🚀
0 Daumen

t in Minuten
N(t)=No* e (hoch minus lamda mal t)
n0 ist 800 gr
4 % Abbaurate

q = 0.96
Ich verwende erst einmal die Formel
N ( t ) = 800 * 0.96 ^t

Eine Exponentialfunkion kann in eine andere
Exponentialfunktion mit anderer Basiis umgewandelt
werden
0.96 ^t = e ^z | ln

t * ln(0.96) = z
t *-0.04082 = z

also
N(t) = 800 * e^( - 0.04082 * t)

b) Wann hat sich die Menge an Dünger halbiert?
N(t) = 800 * e^( - 0.04082 * t) = 400
400 / 800 = e^( - 0.04082 * t)
0.5 = e^( - 0.04082 * t)  | ln
ln(0.5) = - 0.04082 * t
t = 17 min

Bitte alles überprüfen.
Bei Bedarf nachfragen.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community