Hallo,
schau Dir mal den Verlauf der Funktion \(f(x)= \ln(x)/x^2\) an:
~plot~ ln(x)/x^2;[[-1|8|-5|2]] ~plot~
ich lasse den Faktor \(a/b\) einfach weg. Das ist nur ein Faktor und man kann das evt. Ergebnis dann am Ende damit multiplizieren.
Du siehst, dass die Funktion \(f\) mit \(x \to 0\) nach \(-\infty\) verläuft. Da es in der Aufgabenstellung heißt
... schließt mit der x-Achse ... eine nach rechts unbegrenzte Fläche ein.
betrachte ich nur den Teil ab \(x \ge 1\). D.h. die untere Grenze ist \(1\) und die obere sei \(k\) mit \(k \to \infty\). Damit ist die rechte Fläche \(F\):$$\begin{aligned}F &= \lim_{k \to \infty} \int_1^{k} \frac{\ln(x)}{x^2}\,\text dx \\&= \lim_{k \to \infty}\left[-\frac{\ln(x)+1}{x} \right]_1^k \\&= \lim_{k \to \infty} \left( -\frac{\ln(k)+1}{k} +1 \right)\end{aligned}$$Ein \(x\) wächst sehr viel schneller als ein \(\ln(x)\). Es ist also davon auszugehen, dass der linke Summand mit wachsendem \(k\) gegen 0 läuft. Wende die Regel von l'Hospital an: $$\lim_{k \to \infty} \frac{\ln(k)+1}{k} \stackrel{!}= \lim_{k\to \infty} \frac{\frac 1k}{1} = 0 $$Damit bleibt$$F = 1$$Die linke Fläche \(0 \lt x \le 1\) hat einen unendlichen Flächeninhalt.