Aloha :)
Wenn \(x\) im Exponenten steht, wird beim Ableiten einfach mit dem Logarithmus der Basis multipliziert:$$\left(\,\left(\frac{5}{2}\right)^x\,\right)'=\ln\left(\frac{5}{2}\right)\cdot\left(\frac{5}{2}\right)^x$$
Hintergrund ist folgender:$$\left(a^x\right)'=\left(e^{\ln(a^x)}\right)'=\left(e^{x\ln(a)}\right)'=\ln(a)\cdot e^{x\ln(a)}=\ln(a)\cdot a^x$$
Wieso kommt bei \(x=-1\) nichts raus?
$$f'(-1)=\ln\left(\frac{5}{2}\right)\cdot\left(\frac{5}{2}\right)^{-1}=\ln\left(\frac{5}{2}\right)\cdot\frac{2}{5}\approx0,366516$$