Aufgabe:
\( \frac{2√3 * e(3pi/4)}{√2 + i√2} \)
Könnt ihr mir bitte bei dieser Aufgabe helfen?
Was habe ich falsch gemacht? :)
Problem/Ansatz:
kartesische Form: \( \frac{2√3 *e(3pi/4)}{√2 + i√2} \) = \( \frac{2√3 *e(3pi/4)}{√2 + i√2} \) * \( \frac{√2 - i√2}{√2 - i√2} \)
= \( \frac{√2 * 2√3 e(3π/4) - i√2 *2*√3 e(3π/4)}{√2 * √2 - i√2 √2 + i√2 √2 - i^2√2 √2} \)
= \( \frac{√2 * 2√3 e(3π/4) - i√2 *2*√3 e(3π/4)}{2 - 2i + 2i - i^2*2} \)
= \( \frac{√2 * 2√3 e(3π/4) - i√2 *2*√3 e(3π/4)}{2 - 2i^2} \)
= \( \frac{√2 * 2√3 e(3π/4) - i√2 *2*√3 e(3π/4)}{2 +2} \)
= \( \frac{√6 * 2 e(3π/4) - i√6 *2 e(3π/4)}{4} \)
=\( \frac{√6 *2e(3π/4)}{4} \) - \( \frac{i√6 *2e(3π/4)}{4} \)
= \( \frac{2√6 *e(3π/4)}{4} \) - \( \frac{2i√6 *e(3π/4)}{4} \)
= 0,5√6 * e(3π/4) - 0,5i√6 * e(3π/4)
= 3,2√6 - 3,2i√6 = √6(3,2 - 3,2i) = 7,84 - 7,84i
Polarform: r = \( \sqrt{(7,84)^2 + (-7,84)^2} \) = \( \sqrt{61,4656 + 61,4656} \) = \( \sqrt{122,9312} \)
α = y/x = \( \frac{-7,84}{7,84} \) = -1
=> Z= 11,01(cos(-1) +isin(-1))