Bezeichne den Ergebnisvektor mit \(b\).
Zu lösen ist \(Ax=b\), wobei \(A=QR\) und \(Q^\top Q=I\) gilt:
\(Ax=b\iff QRx=b\iff\underbrace{Q^\top Q}_{=I}Rx=Q^\top b\iff\underbrace{R^{-1}R}_{=I}x=R^{-1}Q^\top b\).
Endergebnis ist also \(\large\boxed{x=R^{-1}Q^\top b}\).
Eingesetzt: \(x=\begin{pmatrix}1&1\\0&2\end{pmatrix}\cdot\begin{pmatrix}0&-1\\1&0\end{pmatrix}\cdot\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}1\\4\end{pmatrix}\).