Aufgabe:
Zweistellige Zahlen aus den Ziffern 1, 2, 2, 3, 4 bilden - wie viele Kombinationen gibt es und was ist die Formel?
Problem/Ansatz:
Wir kommen mit Aufschreiben auf 20 Kombinationen, aber verstehen die Formel nicht.
Eure Lösung entspricht der Formel
5*4 = 20.
Hier muss aber mit
4*3 + 1 = 13
gearbeitet werden. Der erste Summand zählt zunächst die Anzahl der Möglichkeiten, jeweils zwei von vier verschiedenen Ziffern auf die beiden Stellen zu verteilen, der zweite Summand berücksichtigt schließlich noch die 22, die auch möglich ist.
Ist die erste Stelle eine 2, dann gibt es 4 Möglichkeiten für die zweite Stelle.
Ist die erste Stelle keine 2, dann gibt es je 3 Möglichkeiten für die zweite Stelle.
4+3·3=13 zweistellige Zahlen lassen sich aus den Ziffern 1, 2, 2, 3, 4 bilden
Danke sehr, nun verstanden!
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos