Aloha :)
Wir wenden zuerst die Regel \(\binom{n+1}{k+1}=\frac{n+1}{k+1}\binom{n}{k}\) für den Binomialkoeffizienten an:$$\sum\limits_{k=0}^n\binom{n}{k}\frac{(-1)^k}{k+1}=\frac{1}{n+1}\sum\limits_{k=0}^n\binom{n}{k}\frac{n+1}{k+1}(-1)^k=\frac{1}{n+1}\sum\limits_{k=0}^n\binom{n+1}{k+1}(-1)^k$$
Jetzt machen wir eine Indexverschiebung, indem wir \(k\) von \(1\) bis \(n+1\) laufen lassen und dafür bei den Summanden \(k\) um \(1\) vermindern:$$=\frac{1}{n+1}\sum\limits_{k=1}^{n+1}\binom{n+1}{k}(-1)^{k-1}$$
Würde die Summe bei \(k=0\) beginnen, käme noch der Summand \(\binom{n+1}{0}(-1)^{0-1}=-1\) hinu. Das nutzen wir aus und lassen die Summe bei \(k=0\) beginnen, wobei die \(-1\) durch Addition einer \(1\) kompensiert wird:$$=\frac{1}{n+1}\left(\sum\limits_{k=0}^{n+1}\binom{n+1}{k}(-1)^{k-1}+1\right)=\frac{1}{n+1}\left(-\sum\limits_{k=0}^{n+1}\binom{n+1}{k}1^{(n+1)-k}(-1)^k+1\right)$$
Nach dem binomischen Lehrsatz ist \(\sum\limits_{k=0}^{n+1}\binom{n+1}{k}1^{(n+1)-k}(-1)^k=(1+(-1))^{n+1}=0\). Das heißt, die Summe fällt im Folgenden einfach weg:$$=\frac{1}{n+1}\left(-0+1\right)=\frac{1}{n+1}$$