Aufgabe:
Sei \( P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) die lineare Abbildung, die jeden Vektor auf die Gerade \( \vec{x}=\lambda \cdot\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right) \) projiziert. Welche Eigenwerte hat \( P ? \)
Wählen Sie eine Antwort:
\( 1,0,0 \)
\( 0,-1,1 \)
\( 1,-1,-1 \)
\( 1,1,-1 \)
\( 1,1,0 \)
Problem/Ansatz:
Es ist ja logisch, dass der Richtungsvektor (1,-1,-1) wieder auf sich selbst projiziert wird. Also Eigenwert 1, wie man aber auf die anderen Eigenwerte kommt, ist mir ein Rätsel