2 x^4-12 x^3+24x^2-16x-1.5 x^3+6x^2-6x =0
2 x^4-13.5 x^3+30x^2-22x =0
x(2 x^3-13.5 x^2+30x-22) =0
Satz vom Nullprodukt:
x1=0
---->
2 x^3-13.5 x^2+30x-22 =0
-------->raten x2=2 muß Teiler des absoluten Gliedes 22 sein
-------->Polynomdivision
(2x^3 - 27/2x^2 + 30x - 22) : (x - 2) = 2x^2 - 19/2x + 11
2x^3 - 4x^2
————————————————————————————
- 19/2x^2 + 30x - 22
- 19/2x^2 + 19x
——————————————————————
11x - 22
11x - 22
—————————
0
-------->
2x^2 - (19/2)x + 11=0 |:2
x^2 - (19/4)x + 11/2=0 ->pq-Formel
x3,4=19/8 ± √(361/64-352/64)
x3,4=19/8 ± 3/8
x3= 11/4
x4=2