Aloha :)
1) Beachte, dass die Grund-Vektoren linear abhängig sind:
$$\begin{pmatrix}1\\1\\2\end{pmatrix}=\begin{pmatrix}1\\0\\1\end{pmatrix}+\begin{pmatrix}0\\1\\1\end{pmatrix}$$
Daher kannst du in der Gleichung$$\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\begin{pmatrix}1\\1\\2\end{pmatrix}+\beta\begin{pmatrix}1\\0\\1\end{pmatrix}+\gamma\begin{pmatrix}0\\1\\1\end{pmatrix}$$auch \(\alpha=0\) setzen und kannst trotzdem alle Vektoren bauen, die du mit beliebigem \(\alpha\) bauen kannst:$$\begin{pmatrix}x\\y\\z\end{pmatrix}=\beta\begin{pmatrix}1\\0\\1\end{pmatrix}+\gamma\begin{pmatrix}0\\1\\1\end{pmatrix}$$
Du hast also bei 3 vorgegebenen Werten \(x,y,z\) nur 2 Freiheitsgrade \(\beta,\gamma\) zur Verfügung. Das reicht nicht, um für jeden Vektor \((x,y,z)^T\) eine geeignete Darstellung zu finden.
Als Gegenbeispiel kannst du versuchen, den Vektor \((0,0,0)^T\) zu konstruieren ;)
2) Im zweiten Fall sind die drei Grund-Vektoren linear unabhängig (ihre Determinante ist \(1\) und damit \(\ne0\)). Daher kannst du hier tatsächlich alle Vektoren \((x,y,z)^T\) durch geeignete Wahl von \(\alpha,\beta,\gamma\) konstruieren.