Du kannst das Ganze als Graphenproblem modellieren: Jede Person ist ein Knoten und zwei Personen sind durch eine Kante verbunden, wenn sie mit einander befreundet sind. Wir wollen nun zeigen, dass es zwei Knoten gibt, welche die selbe Anzahl an Kanten haben. Dazu bemerken wir, dass es nicht sein kann, dass eine Person mit allen befreundet ist und gleichzeitig eine Person mit keinem befreundet ist. Das heisst, der Grad jedes Knoten ist entweder in der Menge \( \{1,2, \ldots, n-1\} \) oder in der Menge \( \{0,1,2, \ldots, n-2\} . \) Jetzt wird dir sicherlich auffallen, dass beide Mengen nur \( n-1 \) Elemente haben, es muss also mindestens zwei Knoten geben, die den selben Grad (Kanten die zu dem Knoten führen) haben. Daraus folgt die Behauptung.