f(x)=x*(x-1)*(x-3)=(x²-1*x)*(x-3)=x³-1*x²-3*x²+3*x
f(x)=x³-4*x²+3*x nun integrieren
F(x)=∫(x³-4*x²+3*x)*dx=∫x³*dx-4*∫x²*dx+3*∫x*dx
F(x)=1/4*x^4-4/3*x³+3/2*x²+C
Bedingung: F(3)=2
F(3)=2=1/4*3^4-4/3*3³+3/2*3+C=-11,25+C → C=2+11,25=13,25
F(x)=1/4*x^4-4/3*x³+3/2*x+13,25
~plot~1/4*x^4-4/3*x^3+3/2*x+13,25;2;[[-1|10|-5|20]];x=3~plot~