Aloha :)
Hier hilft eine Kombination von Produkt- und Kettenregel:
$$f'(x)=\left(\underbrace{(x+3)}_{=u}\cdot\underbrace{e^{-0,5x}}_{v}\right)'=\underbrace{1}_{=u'}\cdot\underbrace{e^{-0,5x}}_{v}+\underbrace{(x+3)}_{=u}\cdot\underbrace{\overbrace{e^{-0,5x}}^{=\text{äußere Abl.}}\cdot\overbrace{(-0,5)}^{\text{innere Abl.}}}_{v'}$$$$f'(x)=e^{-0,5x}-\frac{1}{2}(x+3)e^{-0,5x}=\frac{1}{2}e^{-0,5x}\left(2-(x+3)\right)=-\frac{1}{2}e^{-0,5x}\left(x+1\right)$$