Aufgabe:
Gegeben sei eine dreieckige Platte in der x-z-Ebene mit den Eckpunkten
A=(0,0)
B=(1,1)
C=(0,4).
Die Oberflächenmassendichte der Platte sei durch ρ(x,z)=ax+bz gegeben. Welche der folgenden Ausdrücke beschreiben die Masse der Platte? $$(1)\enspace m = \int \limits_{0}^{1}(\int \limits_{0}^{z} (ax+bz)dx)dz + \int \limits_{0}^{1}(\int \limits_{1}^{\frac{4-z}{3}}(ax+bz)dx)dz )$$ $$(2) \enspace m = \int \limits_{0}^{4}(\int \limits_{x}^{4} (ax+bz)dz)dx - \int \limits_{1}^{4}(\int \limits_{\frac{4-z}{3}}^{z}(ax+bz)dx)dz$$ $$(3) \enspace m = \int \limits_{0}^{4}(\int \limits_{0}^{\frac{4-z}{3}} (ax+bz)dx)dz - \int \limits_{0}^{\frac{4}{3}}(\int \limits_{x}^{4-3x}(ax+bz)dz)dx$$ $$(4) \enspace m = \int \limits_{0}^{1}(\int \limits_{0}^{4-3x} (ax+bz)dz)dx$$
Problem/Ansatz:
Ich verstehe nicht, Funktionen wie $$\frac{4-z}{3}$$, oder $$4-3x$$ als Integralgrenze kommen und wann nicht.
Könnte mir hierbei bitte jemand weiterhelfen. ,
Mfg