0 Daumen
451 Aufrufe

Aufgabe:

Die Nutzenfunktion eines Individuums lautet U(x1,x2)=80⋅ln(x1)+75⋅ln(x2). Gegeben sind die Preise der beiden Güter p1=3 und p2=8. Minimieren Sie die Kosten des Individuums, wenn ein Nutzenniveau von 640 erreicht werden soll.

Wie hoch ist der Lagrange-Multiplikator λ im Kostenminimum?



Problem/Ansatz:

Avatar von

2 Antworten

+1 Daumen

Aloha :)

Wir sollen eine Kostenfunktion \(c(x;y)\) under einer konstanten Nebenbedingung \(U(x;y)\) optimieren:$$c(x;y)=3x+8y\quad;\quad U(x;y)=80\ln x+75\ln y=640$$

Nach Langrange muss in einem Extremum der Gradient der zu optimierenden Funktion proportional zum Gradienten der Nebenbedingung sein. Der Proportionalitätsfaktor \(\lambda\) ist der Lagrange-Multiplikator:$$\operatorname{grad}c(x;y)=\lambda\cdot\operatorname{grad}U(x;y)\quad\implies\quad\binom38=\lambda\binom{80/x}{75/y}$$

Wir dividieren die beiden Koordinatengleichungen$$\frac38=\frac{\lambda\cdot\frac{80}x}{\lambda\cdot\frac{75}y}=\frac{80y}{75x}=\frac{16y}{15x}\implies 16y=\frac38\cdot15x=\frac{45}{8}x\implies y=\frac{45}{128}\cdot x$$

Diesen Befund setzen wir in die Nebenbedingung ein:$$640=80\ln x+75\ln\left(\frac{45}{128}\,x\right)\implies x=103,01301862$$

Daraus erhalten wir den Lagrange-Multiplikator:$$3=\lambda\cdot\frac{80}{x}\implies\lambda=\frac{3x}{80}\implies\lambda=3,862988$$

Avatar von 152 k 🚀
0 Daumen

Wie lautet Deine Lagrange-Funktion?

Avatar von 45 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community