Text erkannt:
Es sei
$$ \operatorname{Aff}_{2}=\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mid f(x)=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) x+\left(\begin{array}{c} e \\ f \end{array}\right) \text { mit } a d-b c \neq 0\right\} $$
die Menge der Affinitäten im \( \mathbb{R}^{2} \).
(a) Zeigen Sie, dass die Verkettung zweier Affinitäten wieder eine Affinität ergibt.
(b) Weisen Sie nach, dass \( \mathrm{Aff}_{2} \) zusammen mit der Verkettung o als Verknüpfung eine Gruppe ist. Zeigen Sie dazu:
(i) Für beliebige \( f_{1}, f_{2}, f_{3} \in \mathrm{Aff}_{2} \) gilt das Assoziativgesetz \( \left(f_{1} \circ f_{2}\right) \circ f_{3}=f_{1} \circ\left(f_{2} \circ f_{3}\right) \).
(ii) In \( \mathrm{Aff}_{2} \) existiert ein neutrales Element \( e \), so dass für alle \( f \in \mathrm{Aff}_{2} \) gilt \( f \circ e=e \circ f=f \).
(iii) Zu jedem \( f \in \mathrm{Aff}_{2} \) existiert eine Umkehrabbildung \( f^{-1} \in \mathrm{Aff}_{2} \), so dass gilt \( f \circ f^{-1}= \) \( f^{-1} \circ f=e \)
(c) Beweisen oder widerlegen Sie: Die Gruppe \( \left(\mathrm{Aff}_{2}, \circ\right) \) ist kommutativ.
Aufgabe:
Problem/Ansatz: Ich weiß nicht wie ich das alles zeigen soll