Der kleine Fermat ist hier sicher die Top-Lösung.
Ohne denselben: Wegen 134 ≡ 2 mod 11 ist nachzuweisen, dass
\(2^{6789} ≡ 6 mod 11\) ist.
Dafür ist es sinnvoll herauszufinden, für welches n
\(2^{n} ≡ 6 mod 11\) erstmalig gilt und in welcher Regelmäßigkeit das wieder passiert.
Da maximal 10 mögliche Reste mod 11 für Zweierpotenzen möglich sind, muss man nicht lange suchen. Es gilt \(2^{9}≡ 512 ≡ 6 mod 11\). Da übrigens auch \(2^{10}≡1024 ≡ 1 mod 11\) gilt, hat man die Regelmäßigkeit gefunden. Alle Potenzen \(2^{9+10k}\) (und damit auch alle Potenzen \(134^{9+10k}\)) lassen bei Teilung durch 11 den Rest 6.