ich habe bald eine Numerik Klausur und diese Aufgabe kommt mit einer Wahrscheinlichkeit von 25% genau so dran.
Da ich noch am Anfang des Lernens bin und mit Aufwand Berechnung noch etwas Schwierigkeiten habe, wollte ich fragen, ob mir jemand bei dieser Aufgabe helfen kann. Vielen Dank im voraus.
Es seien A ∈R^(n×n) eine symmetrische und positiv definite Matrix und b(1),b(2),...,b(m) ∈R^n.
Es sei A = LL^T die Cholesky-Zerlegung von A mit der unteren Dreiecksmatrix L ∈ R^(n×n).
Vergleichen Sie den Aufwand der folgenden beiden Vorgehensweisen zur Lösung der m linearen
Gleichungssysteme Ax(i) = b(i) ,i = 1,2,...,m:
(a) Man bestimmt zuerst die Inverse A^−1 = (z(1),z(2),...,z(n)), indem man n lineare Glei-
chungssysteme Az(j) = ej mit der Cholesky-Zerlegung von A für die kanonischen Basis-
vektoren ej ∈ R^n löst. Anschließend werden x(i) = A^−1b(i) mittels der Matrix-Vektor-
Multiplikation berechnet.
(b) Mit der Cholesky-Zerlegung von A werden die Lösungen von Ax(i) = b(i) für i =
1,2,...,m bestimmt.