Aufgabe:
Es sei \( n \in \mathbb{N} \) und die Matrix
\( \boldsymbol{A}=\left(\begin{array}{cccccc} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \end{array}\right) \in \mathbb{R}^{n \times n} \)
gegeben.
a) Geben Sie für \( n=3 \) die Matrix \( A \) an und berechnen Sie die Cholesky-Zerlegung
\( C C^{\top}=\left(\begin{array}{ccc} c_{11} & 0 & 0 \\ c_{21} & c_{22} & 0 \\ c_{31} & c_{32} & c_{33} \end{array}\right)\left(\begin{array}{ccc} c_{11} & c_{21} & c_{31} \\ 0 & c_{22} & c_{32} \\ 0 & 0 & c_{33} \end{array}\right)=A \quad \text { mit } c_{k, k}>0, k=1,2,3 \)
b) Überprüfen Sie nun für \( n \in \mathbb{N} \) und \( k, l=1, \ldots, n \) die Beziehungen
\( c_{k, l}=\left\{\begin{array}{ll} \sqrt{\frac{k+1}{k}}, & l=k, \\ -\sqrt{\frac{k-1}{k}}, & l=k-1, \\ 0 & \text { sonst. } \end{array}\right. \)
Problem/Ansatz:
Aufgabe a) ist kein Problem. Aber wie kann ich b) zeigen? Habe es mit Induktion probiert, doch scheitere beim Induktionsschritt. Hat hier jemand eine Idee? Vielleicht auch ohne Induktion?