a) f(x)= 1/(x^2+1) + log(1/(x^2+1)) + arctan(1/(x^2+1))
g(x) = 1/(x^2+1) = (x^2 + 1)^{-1}
g'(x) = -(x^2 + 1)^{-2} * 2x = -2x / (x^2 + 1)^2
h(x) = ln(x)
h'(x) = 1/x
h(g(x)) = ln(1/(x^2+1))
h'(g(x)) * g'(x) = 1/(1/(x^2+1)) * -2x / (x^2 + 1)^2 = (x^2+1) * -2x / (x^2 + 1)^2 = -2x/(x^2 + 1)
i(x) = arctan(x)
i'(x) = 1/(x^2 + 1)
i'(g(x)) * g'(x) = 1/((1/(x^2+1))^2+1) * -2x / (x^2 + 1)^2 = (x^2+1)^2/(x^4+2 x^2+2) * -2x / (x^2 + 1)^2
= -(2 x)/(x^4+2 x^2+2)
f'(x) = -2x / (x^2 + 1)^2 - 2x/(x^2 + 1) - (2 x)/(x^4+2 x^2+2)
b) f(x)= x * ln(x) - x
f'(x) = 1 * ln(x) + x * 1/x - 1 = ln(x) + 1 - 1 = ln(x)
c) f(x) = a^x = e^ln(a^x) = e^{x*ln(a)}
f'(x) = e^{x*ln(a)} * ln(a) = a^x * ln(a)