Aloha :)
Wenn du einen Vektor \(\vec r\) mit Hilfe der Vektoren einer Basis \(B=(\,\vec b_1,\vec b_2,\ldots,\vec b_n\,)\) ausdrückst, hat dieser die Form:$$\vec r=\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix}_B=a_1\cdot\vec b_1+a_2\cdot\vec b_2+\ldots+a_n\cdot\vec b_n$$wobei \(a_i\) die Komponenten sind. Daher ist die Reihenfolge der Vektoren innerhalb einer Basis nicht beliebig. Wenn du z.B. zwei Basisvektoren vertauschst, musst du auch die zugehörigen Komponenten vertauschen.
Hier ist die Standardbasis \(B=(1,x,x^2,x^3)\) vorgegeben. Damit ist eine Reihenfolge festgelegt. Zum Beispiel ist$$\begin{pmatrix}1\\0\\0\\0\end{pmatrix}_{B^\ast}\!\!\!=x^3+x^2+x=0\cdot1+1\cdot x+1\cdot x^2+1\cdot x^3=\begin{pmatrix}0\\1\\1\\1\end{pmatrix}_B$$