mx^2- (m^2+1)x + m =0|:m
x^2- \( \frac{m^2+1}{m} \) *x +1 =0|-1
x^2- \( \frac{m^2+1}{m} \) *x =-1
(x-\( \frac{m^2+1}{2m} \))^2=-1+(\( \frac{m^2+1}{2m} \))^2=-1+\( \frac{(m^2+1)^2}{4m^2} \)=\( \frac{-4m^2+m^4+2m^2+1}{4m^2} \)=
(x-\( \frac{m^2+1}{2m} \))^2=\( \frac{m^4-2m^2+1}{4m^2} \)=\( \frac{(m^2-1)^2}{4m^2} \)|\( \sqrt{} \)
x-\( \frac{m^2+1}{2m} \)=\( \frac{m^2-1}{2m} \)
x₁=\( \frac{m^2+1}{2m} \)+\( \frac{m^2-1}{2m} \)=m
x-\( \frac{m^2+1}{2m} \)=-\( \frac{m^2-1}{2m} \)
x₂=\( \frac{m^2+1}{2m} \)-\( \frac{m^2-1}{2m} \)=\( \frac{1}{m} \) mit m≠0