Die Zufallsgrößen \(X\) und \(Y\) sind binomialverteilt mit \(X\sim B(2,\frac{1}{3})\) und \(Y\sim B(2,\frac{2}{3})\).
Damit folgt für die Verteilungen von \(X\) und \(Y\) also
\(\begin{array}{c|c|c|c} x_i & 0 & 1 & 2 \\ P(X=x_i) & \frac{4}{9} & \frac{4}{9} & \frac{1}{9} \end{array}\) und \(\begin{array}{c|c|c|c} y_i & 0 & 1 & 2 \\ P(Y=x_i) & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{array}\).
Für die Zufallsgröße \(X+Y\) folgt in der gemeinsamen Wahrscheinlichkeitsverteilung wg. der Unabhängigkeit \((P(X=x_i \land Y=y_i)=P(X=x_i)\cdot P(Y=y_i))\) von \(X\) und \(Y\) also nun:
\(P(X+Y=0) = P(X=0 \land Y=0) = P(X=0)\cdot P(Y=0) = \frac{4}{9} \cdot \frac{1}{9} = \frac{4}{81}\).
\(P(X+Y=1) = P(X=1 \land Y=0) + P(X=0 \land Y=1) = \frac{4}{81} + \frac{16}{81} = \frac{20}{81}\).
\(P(X+Y=2) = P(X=0 \land Y=2) + P(X=1 \land Y=1) + P(X=2 \land Y=0) = \frac{16}{81} + \frac{16}{81} + \frac{1}{81} = \frac{33}{81}\).
\(P(X+Y=3) = P(X=1 \land Y=2) + P(X=2 \land Y=1) = ...\)
\(P(X+Y=4) = P(X=2 \land Y=2) = P(X=2)\cdot P(Y=2) = ...\)
Die letzteren beiden Werte sind dir zum Ausfüllen überlassen (analog zur Rechnung wie oben).