f (x) = 4x^3 + 8x^5 + 6x^3
\(\int\limits_1^5(4x^3 + 8x^5 + 6x^3)dx\\=\left[4x^4/4+8x^6/6+6x^4/4\right]_1^5\\=\left[x^4+4x^6/3+3x^4/2\right]_1^5\\=5^4+4\cdot5^6/3+3\cdot5^4/2-(1^4+4\cdot1^6/3+3\cdot1^4/2)\\=22392\)
:-)
Kontrolle mit Wolframalpha:
\( \int \limits_{1}^{5}\left(4 x^{3}+8 x^{5}+6 x^{3}\right) d x=22392 \)