Aloha :)
Willkommen in der Mathelounge... \o/
Um deine Frage zu beantworten, schauen wir uns mal die ersten beiden Summanden an.
Du sollst berechnen: \(\quad\sum\limits_{i=1}^2(i+1)^2=2^2+3^2\)
Du hast berechnet:\(\quad\;\;\left(\sum\limits_{i=1}^2(i+1)\right)\cdot\left(\sum\limits_{i=1}^2(i+1)\right)=(2+3)\cdot(2+3)\)
Offenbar führt eine solche Faktorisierung zu einem falschen Ergebnis.
Du kannst aber das Binom ausrechnen und anschließend die Summe aufteilen:$$\sum\limits_{i=1}^n(i+1)^2=\sum\limits_{i=1}^n(i^2+2i+1)=\sum\limits_{i=1}^ni^2+2\sum\limits_{i=1}^ni+\sum\limits_{i=1}^n1$$
Du könntest auch eine Index-Verschiebung verwenden:$$\sum\limits_{i=1}^n(i+1)^2=\sum\limits_{i=2}^{n+1}i^2=\left(\sum\limits_{i=1}^{n+1}i^2\right)-1$$
In jedem Fall brauchst du eine geschlossene Formel für die Summe der Quadratzahlen:$$\sum\limits_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}$$
Damit erhältst du:$$\sum\limits_{i=1}^n(i+1)^2=\frac{(n+1)(n+2)(2n+3)}{6}-1$$