0 Daumen
338 Aufrufe

Hallo zusammen :)

Ich wäre sehr dankbar, wenn jemand mit diesen Aufgaben mir helfen kann

Danke im Voraus :)

Aufgaben:

(13 )Petersburg game: Bernoulli found out that everybody would invest only a small
amount for this game. For this reason, he looked for an utility function U, where the marginal utility U′(x) is indirect proportional to the value x. Show that this means that he considered the logarithmic utility and calculate the expected utility for this utility function.

(15) Petersburg game: Consider that the decision maker follows the following rule: It is only allowed to bid for the game (the feasible bids), if the probability of a loss is smaller than 80%. Find the maximal possible bid under this constraint.

(16) Consider the lottery

payment01234
probability1/21/41/81/161/16

For bidding 1,2,3 units calculate the expected profit and its variance. Show the result in a return/risk diagram.

(17) How to find out individual utility functions?

Howard Raiffa (1961): Decision makers have to indicate their certainty equivalents for the lottery

payment01
probability
p1-p

Show that given the constraints U(0) = 0, U(1) = 1, if we know the certainty equivalents for all p, 0 ≤ p ≤ 1, we know the utility function U for all values between 0 and 1.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community