0 Daumen
230 Aufrufe

blob.png

Text erkannt:

Es seien \( X \) und \( Z \) diskrete Zufallvariablen, sodass \( \mathbb{E}[Z] \) existiert und \( \mathbb{P}(X=x)>0 \) für alle \( x \in W_{X} \). Beweisen Sie die Formel
\( \mathbb{E}[Z]=\sum \limits_{x \in W_{x}} \mathbb{E}[Z \mid X=x] \mathbb{P}(X=x) \)

Sie können diese Formel benutzenblob.pngzu beweisen.Ai ist eine disjunkte Zerlegung von Ω.

Text erkannt:

\( \mathrm{E}[X]=\sum \limits_{i=1}^{\infty} \mathrm{E}\left[X \mid A_{i}\right] \cdot \mathbb{P}\left(A_{i}\right) \)

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community