Ich geh mal davon aus, dass a) klar geht?
Für b) sei
\( \left\{ a_0 \; x^{a_1} → \ln\left(a_0 \; x^{a_1} \right)→ \ln\left(a_0 \right) + a_1 \ln\left(x \right) \right\} \)
setze a_2=ln(a_0), x=ln(x)
\(f(x) \, := \, a_1 \; x + a_2\)
\(\left(f\left(\ln\left(x\left(j \right) \right) \right) = \ln\left(y\left(j \right) \right),j,1,3 \right)\)
\( \left\{ a_1 + a_2 = 0, a_1 \cdot 2 + a_2 = 3, a_1 \cdot 3 + a_2 = 5 \right\} \)
===>
A (aj) = b
\( \, \left(\begin{array}{rr}1&1\\2&1\\3&1\\\end{array}\right) \left(\begin{array}{r}a_1\\a_2\\\end{array}\right) = \, \left(\begin{array}{r}0\\3\\5\\\end{array}\right) \)
AT A (aj) = AT b
(aj) = (AT A)-1 AT b
(aj) = \(\left(\begin{array}{r}2.5\\-2.33333\\\end{array}\right)\)
\(f(x) \, := \, 0.09697 \; x^{2.5} \)