0 Daumen
181 Aufrufe

Aufgabe:

Bestimme \( d=g g T(2,5) \) mit dem Euklidischen Algorithmus, bestimme die Zahlen \( r \) und \( s \), sodass \( 2 r+5 s=d \) und verwende diese Gleichung, um eine ganzzahlige Lösung unserer Gleichung \( 2 x+5 y=100 \) anzugeben. Verallgemeinere diese Vorgehensweise, d.h. formuliere, wie und wann man mit dem Euklidischen Algorithmus eine Lösung der Gleichung \( a x+b y=c(a, b, c \) ganze Zahlen) finden kann.


Problem/Ansatz:

Wie kann man das allgemein definieren? den ggt hab ich bereits berechnet

Avatar von

1 Antwort

0 Daumen

Hallo

kennst du den Algorithmus nicht

5=2*2+1 damit ist der ggT 1 und man hat direkt 1=1*5-2*2  das kann man mit100 erweitern und hat 100=100*5-200*2

man kann immer den Euch. Als. rückwärts ausführen und dammit ggT(a,b)=r*a+sb haben ras ganz

damit kann man jede Vielfache des ggT entsprechend erzeugen, d.h. d muss Vielfaches des ggT sein-

Gruß  lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community