Hallo Furkan,
der größte gemeinsame Teiler ist ein Teiler, das heißt eine Zahl die sowohl 234 als auch 13 teilt. Nun ist 13 aber ohne Zweifel eine Primzahl, die nur die Teiler 1 und 13 hat. Und da \(234 = 13 \cdot 18\) ist, ist \(13\) der größte gemeinsame Teiler. Aber nicht 18 (18 ist größer als 13, das geht gar nicht) oder 5. Wenn eine Zahl durch 5 teilbar wäre, so wäre die letzte Ziffer eine 0 oder eine 5. Das ist bei beiden Zahlen nicht der Fall.
Der Euklidische Algorithmus wäre in diesem Fall:$$\begin{array}{rr|r} r& s& \lfloor r/s \rfloor\\ \hline 234& 13& 18 \\ 13& 0& - \end{array}$$.. und damit ist es schon erledigt. Der \(\text{ggt}(234,\,13)=13\)
Gruß Werner