3 * [sin(x)-cos(x)]^2 * [ (cos(x)+sin(x)]
sin(x)=a cos(x)=b
3 * {[a-b]^2 * [ a+b]}= 3 * {[a-b] *[a-b] *[ a+b]}=3*{[a-b] *[a^2-b^2)]}=
p(a,b)=3*[a^3 -a*b^2-a^2*b+b^3]
p´(a,b)=3*[3a^2*a´-(a´*b^2+a*2b*b´)-(2a*a´*b+ a^2*b´)+3b^2*b´]
p´(a,b)=3*[3a^2*a´-a´*b^2-a*2b*b´-2a*a´*b- a^2*b´+3b^2*b´]
a=sin(x) a´= cos(x)
b=cos(x) b´=-sin(x)
p´(a,b)=3*[3*sin^2(x)*cos(x)-cos(x)*cos^2(x)-sin(x)*2*cos(x)*(-sin(x))-2*sin(x)*cos(x)*cos(x) - sin^2(x)*(-sin(x))+3*cos^2(x)*(-sin(x))]