\(\begin{aligned} \left(\begin{array}{l}n \\ k\end{array}\right)=\frac{1}{k !} \cdot \prod \limits_{i=n-k+1}^{n} i=\frac{1}{k !} \cdot \prod \limits_{i=-n}^{-n+k-1}-i=\frac{1}{k !}(-1)^{k} \prod \limits_{i=-n}^{-n+k-1} i=(-1)^{k}\left(\begin{array}{c}k-n-1 \\ k\end{array}\right)\end{aligned} \)
Nun kannst du einfach \(n=-x\) setzen.