Aloha :)
Wir zeigen die Behauptung:$$\sum\limits_{k=0}^m\binom{n+k}{k}=\binom{n+m+1}{n+1}\quad;\quad n,m\in\mathbb N_0$$durch vollständige Induktion über \(m\).
Verankerung bei \(m=0\):
$$\sum\limits_{k=0}^m\binom{n+k}{k}=\sum\limits_{k=0}^0\binom{n+k}{k}=\binom{n+0}{0}=1=\binom{n+0+1}{n+1}=\binom{n+m+1}{n+1}\quad\checkmark$$
Induktionsschritt von \(m\) auf \(m+1\):
$$\sum\limits_{k=0}^{m+1}\binom{n+k}{k}=\sum\limits_{k=0}^{m}\binom{n+k}{k}+\binom{n+(m+1)}{(m+1)}\stackrel{\text{(Ind.Vor.)}}{=}\binom{n+m+1}{n+1}+\binom{n+m+1}{m+1}$$Wegen \(\binom{n}{k}=\binom{n}{n-k}\) können wir das zweite Binom umformen:$$\phantom{\sum\limits_{k=0}^{m+1}\binom{n+k}{k}}=\binom{n+m+1}{n+1}+\binom{n+m+1}{n}$$und mit dem Additionstheorem \(\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}\) sind wir fertig:$$\phantom{\sum\limits_{k=0}^{m+1}\binom{n+k}{k}}=\binom{n+m+1+1}{n+1}=\binom{n+(m+1)+1}{n+1}\quad\checkmark$$