Aufgabe:
In dieser Aufgabe wollen wir das Heron-Verfahren zur Berechnung beliebiger Quadratwurzeln \( \sqrt{y} \) für \( y \in \mathbb{R} \) mit \( y \geq 1 \) verallgemeinern.
(a) Gegeben sei \( y \in \mathbb{R} \) mit \( y \geq 1 \). Wir definieren \( a_{1}:=1 \) und \( b_{1}:=y \) sowie
\( a_{n+1}:=\frac{2 y}{a_{n}+b_{n}} \quad \) und \( \quad b_{n+1}:=\frac{a_{n}+b_{n}}{2} \quad \) für alle \( n \in \mathbb{N} \).
Zeigen Sie:
(i) \( \left(I_{n}\right)_{n \in \mathbb{N}} \) mit \( I_{n}:=\left[a_{n} ; b_{n}\right] \) stellt eine Intervallschachtelung dar.
(ii) Das nach dem Intervallschachtelungsprinzip eindeutig bestimmte Element \( x \in \) \( \mathbb{R} \) mit der Eigenschaft \( x \in \bigcap_{n \in \mathbb{N}} I_{n} \) erfüllt \( x^{2}=y \); wir definieren \( \sqrt{y}:=x \).
(b) Bestimmen Sie mithilfe des Heron-Verfahrens ein \( q \in \mathbb{Q} \), sodass \( 0<q-\sqrt{3}<10^{-12} \).