\( \left(v_{1}+\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)\right)^{2}=v_{1}^{2}+\frac{m_{2}}{m_{1}}\left(v_{2}^{2}-u_{2}^{2}\right) \)
Erst mal links binomische Formel :
\( v_{1}^2+2v_1\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)+\frac{m_{2}^2}{m_{1}^2}\left(v_{2}-u_{2}\right)^2=v_{1}^{2}+\frac{m_{2}}{m_{1}}\left(v_{2}^{2}-u_{2}^{2}\right) \)
\( 2v_1\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)+\frac{m_{2}^2}{m_{1}^2}\left(v_{2}-u_{2}\right)^2=\frac{m_{2}}{m_{1}}\left(v_{2}^{2}-u_{2}^{2}\right) \)
rechts die 3. binomi. Formel.
\( 2v_1\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)+\frac{m_{2}^2}{m_{1}^2}\left(v_{2}-u_{2}\right)^2=\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)\left(v_{2}+u_{2}\right) \)
Falls klar ist, dass v2 - u2 nicht 0 ist, dadurch dividieren
\( 2v_1\frac{m_{2}}{m_{1}}+\frac{m_{2}^2}{m_{1}^2}\left(v_{2}-u_{2}\right)=\frac{m_{2}}{m_{1}}\left(v_{2}+u_{2}\right) \)
Und noch durch m2 / m1
\( 2v_1+\frac{m_{2}}{m_{1}}\left(v_{2}-u_{2}\right)=\left(v_{2}+u_{2}\right) \)
mal m1
\( 2v_1m_1+m_{2}\left(v_{2}-u_{2}\right)=m_1\left(v_{2}+u_{2}\right) \)
\( 2v_1m_1+m_{2}v_{2}-m_{2}u_{2}=m_1v_{2}+m_{1}u_{2} \)
\( 2v_1m_1+m_{2}v_{2}-m_1v_{2}=m_{2}u_{2}+m_{1}u_{2}=u_{2}( m_{2}+m_1)\)
und dann durch die Klammer teilen.