Hallo Emiliy,
Wenn Du eine Funktion wie z.B. \(y=x^2\) in positive Y-Richtung - also nach oben - schieben möchtest, so addierst Du ein \(\Delta y\):$$y_+ = x^2 + \Delta y$$diese Vorgehen ist doch offensichtlich. Beachte hier bitte, dass das (neue) \(y_+\) auf der linken und das \(\Delta y\) auf der rechte Seite der Gleichung steht. Das \(y_+\) wird dadurch genau um \(\Delta y\) größer als das \(y=x^2\) vorher.
Und beim \(x\) ist es tatsächlich genauso, nur muss man die Gleichung zunächst in die Form bringen, in der man ein \(\Delta x\) addieren kann. In diesem Fall ist$$y = x^2 \implies x = \pm\sqrt y$$Das \(\pm\) deshalb, weil das \(x\) sowohl positiv als auch negativ sein kann. Das ist hier aber nicht so wichtig.
Verschiebt man nun die Funktion (es ist immer noch die gleiche Funktion!) in positive X-Richtung - also nach rechts im Bild - dann addiere genau wie bei bei der Y-Richtung ein \(\Delta\)$$x_+ = \pm\sqrt y + \Delta x$$Die Umformung in die 'gewohnte' Form gibt $$\begin{aligned}x_+ &= \pm\sqrt y + \Delta x \\ x_+ - \Delta x&=\pm\sqrt y\\ (x_+ - \Delta x)^2&= y \\y&= (x_+ - \Delta x)^2\end{aligned}$$Bei einer Kreisgleichung in der üblichen Form, der um die Koordinate seines Mittelpunktes \((x_m,\,y_m)\) verschoben ist, betrifft diese Umwandlung beide Koordinaten:$$(x-x_m)^2 + (y-y_m)^2=r^2$$Löse diese Gleichung jeweils einmal nach \(x\) und einmal nach \(y\) auf. Und Du wirst sehen, dass dort am Ende immer \(x=\dots+x_m\) bzw. \(y=\dots+y_m\) steht.
Wenn ich einen Kreis parametrisiere, im Uhrzeigersinn, dann ist mind. eine Koordinate von meinem Polarvektor vom Vorzeichen her negativ, aber warum?
Mir ist nicht klar, was Du damit meinst. Ein Kreis mit Parameter \(t\) könnte so aussehen:$$x = x_m + r\cos(t)\\ y=y_m + r\sin(t)$$Hier gehen beide Koordinaten des Mittelpunktes \((x_m,\,y_m)\) positiv ein.
Menst Du vielleicht eine Drehung um 90°?
Gruß Werner