Aufgabe:
Gegeben sei die Funktion \(f(x, y, z)=9 \cdot z^{4}+3 \cdot e^{-2 \cdot\left(y^{2}+x^{2}\right)}\). Das Ziel dieser Aufgabe ist es, das Taylor-Polynom 2. Grades von \(f\) zu bestimmen.
Berechnen Sie zunächst die folgenden partiellen Ableitungen:
\(\left(D_{i}\right.\) steht für \(\frac{\partial}{\partial_{i}}\) und \(D_{i j}\) steht für \(\left.\frac{\partial^{2}}{\partial_{j} \partial_{i}}\right)\)
\(D_{x} f=-12 x \mathrm{e}^{-2\left(x^{2}+y^{2}\right)}\)
\(D_{y} f=-12 y \mathrm{e}^{-2\left(y^{2}+x^{2}\right)}\)
\(D_{z} f=36 z^{3}\)
\(D_{x x} f=\left(48 x^{2}-12\right) \mathrm{e}^{-2 x^{2}-2 y^{2}}\)
\(D_{y y} f=\left(48 y^{2}-12\right) \mathrm{e}^{-2 y^{2}-2 x^{2}}\)
\(D_{z z} f=108 z^{2}\)
\(D_{x y} f=48 x y \mathrm{e}^{-2\left(y^{2}+x^{2}\right)}\)
\(D_{x z} f=0\)
\(D_{y z} f=0\)
Das habe ich hinbekommen.
Problem/Ansatz:
Geben Sie außerdem das Taylor-Polynom zweiten Grades von \(f\) um den Punkt \((0,0,1)\) an:
$$ f \approx $$
Hier fällt es mir schwer, denn man muss da irgendwie sowas:
$$f(x, y, z)=\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{(x-a)^{n} \cdot(y-b)^{j} \cdot(z-c)^{k}}{n ! \cdot j ! \cdot k !} \cdot\left[\frac{\partial^{n}}{\partial x^{n}} \frac{\partial^{j}}{\partial y^{j}} \frac{\partial^{k}}{\partial z^{k}} f(x, y, z)\right]_{(x, y, z)=(a, b, c))}$$
Vielen Dank und freundliche Grüße Simplex