Die Fibonacci Zahlen \( F_{1}, F_{2}, F_{3}, \ldots \) (s. Vorlesungsskript, S. 37) sind rekursiv definiert durch: \( F_{1}=F_{2}=1 \) und \( F_{n}=F_{n-1}+F_{n-2} \) für \( n \geq 3 \). (Die ersten Zahlen sind also \( 1,1,2,3,5,8, \cdots) \). Welche von diesen Zahlen sind durch 5 teilbar?