\( g: \vec{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{l}3 \\ 7 \\ 7\end{array}\right) \)
\( T(2,5|1,13| 2,63) \)
\( H: \;3 x+3 y+7 z=d \)
\( 3 \cdot 2,5+3 \cdot 1,13+7 \cdot 2,63=1 \)
\( 29,3=d \)
\( H:\; 3 x+3 y+7 z=29,3 \)
\( 3 \cdot 3 t+3 \cdot 3 t+7 \cdot 7 t=29,3 \)
\( t=0,44 \)
\( S=0,44 \cdot\left(\begin{array}{l}3 \\ 3 \\ 7\end{array}\right)=\begin{pmatrix} 1,32\\1,32\\3,08 \end{pmatrix} \)
\( \begin{aligned} d\left(T; S\right) &=\sqrt{(2,5-1,32)^{2}+(1,13-1,32)^{2}+(2,63-3,08)^{2}} \\ &=1,28 \end{aligned} \)