a) $$P=\begin{pmatrix} 8 \\ 7 \end{pmatrix}*0,5^{ 7 }*(1-0,5)^{ 8-7 }=8*0,5^{ 8 }=0,03125$$
b) $$P=0,5*\begin{pmatrix} 7 \\ 1 \end{pmatrix}*0,5^{ 1 }*(1-0,5)^{ 7-1 }=0,5*7*0,5^{ 1 }*0,5^{ 6 }$$$$=7*0,5^{ 8 }\approx 0,02734$$
c) $$P=\begin{pmatrix} 64 \\ 32 \end{pmatrix}*0,5^{ 32 }*(1-0,5)^{ 64-32 }=\begin{pmatrix} 64 \\ 32 \end{pmatrix}*0,5^{ 64 }=\approx 0,09935$$
d) $$P=\sum _{ k=32 }^{ 64 }{ \begin{pmatrix} 64 \\ k \end{pmatrix}*0,5^{ k }*(1-0,5)^{ 64-k } } =\sum _{ k=32 }^{ 64 }{ \begin{pmatrix} 64 \\ k \end{pmatrix}*0,5^{ 64 } } \approx 0,54967$$
e) $$P=\sum _{ k=26 }^{ 38 }{ \begin{pmatrix} 64 \\ k \end{pmatrix}*0,5^{ k }*(1-0,5)^{ 64-k } } =\sum _{ k=26 }^{ 38 }{ \begin{pmatrix} 64 \\ k \end{pmatrix}*0,5^{ 64 } } \approx 0,89658$$
f) $$P=\begin{pmatrix} 306 \\ 140 \end{pmatrix}*0,5^{ 140 }*(1-0,5)^{ 306-140 }=\begin{pmatrix} 306 \\ 140 \end{pmatrix}*0,5^{ 306 }\approx 0,01514$$