Aufgabe:
Komplexe Fourier-Koeffizienten Xn eines reellen periodischen Signals x(t)
X n =
0, für gerade n und n = 0
-j * \( \frac{2}{π*n} \), für ungerade n
Problem/Ansatz:
Gesucht ist die reelle Funktion xG(t) der Grundschwingung.
Die Grundschinwung ist n = 1, also
X1 = -j * \( \frac{2}{π} \)
Bräuchte einen Ansatz keine Lösung.