Aloha :)
Willkommen in der Mathelounge... \o/
Die Zufallsvariable \(Y\) hängt von der Zufallsvariablen \(X\) ab:$$Y\coloneqq25-(X-5)^2=25-(X^2-10X+25)=10X-X^2$$Daher können wir nicht erwarten, dass \(X\) und \(Y\) unabhängige Zufallsvariablen sind.
Wir prüfen das jedoch rechnerisch nach. Wenn zwei Zufallsvariablen \(X\) und \(Y\) statistisch unabhängig sind, gilt für die Erwartungswerte:$$\left<X\cdot Y\right>=\left<X\right>\cdot\left<Y\right>$$Da die Bildung des Erwartungswertes eine lineare Operation ist, können wir die Erwartungswerte wie folgt berechnen:$$\left<Y\right>=\left<10X-X^2\right>=10\left<X\right>-\left<X^2\right>$$$$\left<X\cdot Y\right>=\left<10X^2-X^3\right>=10\left<X^2\right>-\left<X^3\right>$$Damit gilt:$$\underbrace{10\left<X^2\right>-\left<X^3\right>}_{=\left<X\cdot Y\right>}\ne\underbrace{10\left<X\right>^2-\left<X\right>\left<X^2\right>}_{=\left<X\right>\cdot\left<Y\right>}$$\(X\) und \(Y\) sind also nicht unabhängig voneinander.
Um eine Aussage über die Korreliertheit der beiden Zufallsvariablen \(X\) und \(Y\) treffen zu können, berechnen wir die Kovarianz:$$\operatorname{Cov(X;Y)}=\left<XY\right>-\left<X\right>\left<Y\right>=10\left<X^2\right>-\left<X^3\right>-\left(10\left<X\right>^2-\left<X\right>\left<X^2\right>\right)$$$$\phantom{\operatorname{Cov(X;Y)}}=10\left(\left<X^2\right>-\left<X\right>^2\right)+\left<X\right>\left<X^2\right>-\left<X^3\right>$$$$\phantom{\operatorname{Cov(X;Y)}}=10\operatorname{Var}(X)+\left<X\right>\left<X^2\right>-\left<X^3\right>\ne0$$Die beiden Zufallsvariablen \(X\) und \(Y\) sind auch nicht unkorreliert.