Hallo
genau das hätte ich dir auch vorgeschlagen
kannst du denn rausfinden wann \( \sum\limits_{k=0}^{n}{y^k/k} \) konvergiert? klar dass du für y=1 eine harmonische Reihe hast, für y=-1 eine Leibnizreihe.
, |y|<1 konvergiert, für |y|>1 hast du keine Nullfolge mehr
jetzt weisst du also |x-1/x|<1 und musst nur noch die Ungleichung für x-1/x>1 und <1 lösen um die richtigen x zu finden (natürlich ist es für x=0 nicht definiert)
lul