Aufgabe:
Text erkannt:
Aufgabe 2 (Singularitäten)
Entscheiden Sie, ob die jeweils definierte Funktion \( f \) im Punkt \( x_{0} \) stetig ergänzt werden kann. In anderen Worten, bestimmen Sie, ob der Grenzwert \( \lim \limits_{x \rightarrow x_{0}} f(x) \) existiert, und falls ja, berechnen Sie ihn:
(i) \( f:(-3, \infty) \backslash\{2\} \rightarrow \mathbb{R}, \quad x_{0}=2 \),
\( f(x)=\frac{x^{2}-6 x+8}{x^{2}+x-6} \)
(ii) \( f:[0,2 \pi] \backslash\{\pi\} \rightarrow \mathbb{R}, \quad x_{0}=\pi \),
\( f(x)=\frac{\sin (x+\pi)}{\cos (x / 2)} \)
(iii) \( f: \mathbb{R} \backslash\{3\} \rightarrow \mathbb{R}, \quad x_{0}=3 \),
\( f(x)=\frac{x^{4}-3 x^{3}-7 x^{2}+15 x+18}{x^{2}-6 x+9} \)
(iv) \( f:(-\pi / 2, \pi / 2) \backslash\{0\} \rightarrow \mathbb{R}, \quad x_{0}=0 \),
\( f(x)=\frac{\tan (x)}{\cosh (x)-1} \)
Problem/Ansatz:
Also bei der i) und der iii) komme ich klar, da habe ich jeweils den Bruch gekürzt, bzw. Polynomdivision durchgeführt und dann x0 eingesetzt, es handelt sich in beiden Fällen um hebbare Definitionslücken.
Ist der Wert, der dann dort rauskommt, der Grenzwert, von dem oben die Rede ist?
Ich habe allerdings bei der ii) und der iv) irgendwie keinen Ansatz, wie ich herausfinden soll, ob die Definitionslücke hebbar ist, bzw. wie ich den Bruch vereinfache...
und was hat es mit rechtsseitigem/linksseitigem Grenzwert in diesem Zusammenhang auf sich? Muss ich da noch etwas machen?
Danke schonmal im Voraus!