Aufgabe:
Verhalten in der Umgebung der Polstelle:
Ist \( \lim \limits_{x \rightarrow a-} f(x)=\infty \) oder \( \lim \limits_{x \rightarrow a-} f(x)=-\infty \) ? Entsprechend für \( \lim \limits_{x \rightarrow a+} \) (f schreiben als \( g(x) \cdot \frac{1}{(x-a)^{k}} \) (wobei \( k \) die Vielfachheit der Polstelle \( a \) ist) und \( x \rightarrow a \) betrachten)
Problem/Ansatz:
Was hat der Satz in klammern zu bedeuten, wie komme ich auf die funktion f = g(x)* 1/ (x-a)^k. (Das ist übrigens ein Merkblatt). Und wenn ich eine polstelle ohne VZW hätte. Müssten doch egal ob ich a- oder a+ mich annähere, das limes in die gleiche richtung gehen also entweder positiv unendlich oder negativ unendlich.
Danke