Aloha :)
Erst die Wurzel umformen und dann bei \((\ast)\) den Exponenten um eins erhöhen und durch den neuen Exponenten dividieren:
$$\int\frac{1}{\sqrt[3]{x^2}}\,dx=\int\frac{1}{x^{\frac23}}\,dx=\int x^{-\frac23}\,dx\stackrel{(\ast)}{=}\frac{x^{\frac13}}{\frac13}+C=3\sqrt[3]x+C$$