0 Daumen
347 Aufrufe

Aufgabe:

Die Grundfläche einer Pyramide ist festgelegt durch
A(4|0|0), B (4|4|0), C(0 | 4 |0) und D (0|0|0). Die
Spitze ist S(2|24).
a) Zeichnen Sie die Pyramide.
b) Zeigen Sie, dass die Grundfläche quadratisch ist.
c) Berechnen Sie den Abstand der Punkte A und S sowie die Länge der Flächendiagonalen AC.

_____________________________________
Berechnen Sie den Abstand der Punkte P und O
a) P(4|6|-2), Q(-5|-2|3); d(P, Q) =

b) P(1|-3|5),Q(10|3|1): d(P, Q) =



Problem/Ansatz:

Wie funktioniert das?

Avatar von
Wie funktioniert das?

Mach nicht alles auf einmal. Zeichne erst die Eckpunkte der Pyramide
in ein x-y-z-Koordinatensystem.

Hast du das schon?

Hast Du es schon mal gezeichnet?

blob.png

Kennst Du den Satz des Pythagoras?

1 Antwort

0 Daumen

Berechnen Sie den Abstand der Punkte P und O

a) P(4|6|-2), Q(-5|-2|3);

PQ = Q - P = [-9, -8, 5]

d(P, Q) = √(9^2 + 8^2 + 5^2) = √170 = 13.04

Vielleicht probierst du b mal alleine. Vermutlich kommst du auf ein Ergebnis zwischen 11 und 12. Kannst du das bestätigen?

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community