Aufgabe:
Die Abbildung stellt in einem dreidimensionalen Koordinatensystem schematisch das Spielfeld (Einzelfeld) eines Tennisplatzes dar. Das Feld wird in der Mitte durch ein Netz unterteilt, das von den Außenpfosten AB und EF gehalten wird. Die Netzoberkante ist in der Mitte im Punkt D niedriger als außen in den Punkten B und F, aber ansonsten geradlinig gespannt. Die angegebenen Maße des Platzes sind aus Vereinfachungsgründen auf ganze Meter gerundet. Auch die Koordinaten der unten Angegebenen Punkte sind in Metern zu verstehen.
Die Bälle fliegen in diesem Modell geradlinig, es sollen jegliche Spins vernachlässigt werden. Außerdem wird der Tennisball als Punkt aufgefasst.
Die angegebenen Punkte des Tennisfelds haben die folgenden Koordinaten:
A(0|12|0) B(0|12|1,1) C(4,5|12|0) D(4,5|12|0,9) E(9|12|0) F(9|12|1,1) P(4,5|6|0) Q(9|6|0)
Im Punkt (4|24|0) steht der Aufschläger, der versucht den Tennisball vom Punkt H(4|24|3) seines Schlägers aus geradlinig in den Eckpunkt P des gegnerischen Aufschlagfeldes ECPQ zu schlagen.
Dem Aufschläger gelingt es, seinen Aufschlag genau in dem Punkt P zu platzieren. Von dort aus springt der Ball idealtypisch, wie in der Abbildung 2 dargestellt wird, ab in Richtung des Gegners, der auf der Grundlinie (der x1-Achse) steht.
Dem Spieler gelingt es nicht jedes mal den Punkt P zu treffen. Oft sind abweichungen bis zu 0.5m realistisch. Bestimmen sie nun diejenigen punkte in der x^1 x² ebene indem der schläger des gegners zum return trifft.
…
Problem/Ansatz:
Bis zu 0.5m radius abweichung vom Punkt p resultiert doch in unendlich viele verschiedene Punkte in der x^1x² ebene. Was genau soll ich denn da berechnen? Oder wieviele punkte?